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Wavelet-Based Parameter Estimation for Polynomial
Contaminated Fractionally Differenced Processes

Peter F. Craigmile, Peter Guttorp, and Donald B. Percival

Abstract—We consider the problem of estimating the parame-
ters for a stochastic process using a time series containing a trend
component. Trend, i.e., large scale variations in the series that
are best modeled outside of a stochastic framework, is often con-
founded with low-frequency stochastic fluctuations. This problem
is particularly evident in models such as fractionally differenced
(FD) processes, which exhibit slowly decaying autocorrelations
and can be extended to encompass nonstationary processes with
substantial low frequency components. We use the discrete wavelet
transform (DWT) to estimate parameters for stationary and non-
stationary FD processes in a model of polynomial trend plus
FD noise. Using Daubechies wavelet filters allows for automatic
elimination of polynomial trends due to embedded differencing
operations. Parameter estimation is based on an approximate
maximum likelihood approach made possible by the fact that the
DWT decorrelates FD processes approximately. We consider this
decorrelation in detail, examining the between- and within-scale
wavelet correlations separately. Better between-scale decorrela-
tion can be achieved by increasing the length of the wavelet filter,
whereas the within-scale correlations can be handled via explicit
modeling by a low-order autoregressive process. We demonstrate
our methodology by applying it to a popular climate dataset.

Index Terms—Approximate Gaussian likelihood, confidence in-
tervals, discrete wavelet transform, fractionally differenced pro-
cesses, trend.

I. INTRODUCTION

N recent years, long memory processes have been used
to model natural phenomena in areas such as atmospheric
science, geophysics, and hydrology. Such processes are charac-
terized by slowly decaying autocorrelations that can be hard to
model using standard models such as the autoregressive moving
average (ARMA) processes [1]. One common example of a
long memory process, called the fractionally differenced (FD)
process [2], [3], extends existing (integer) integrated processes.
The mathematical tractability of FD processes allows for a
varied range of estimation methods.
In the absence of a trend component, a common method of
FD parameter estimation involves calculating the exact likeli-
hood and maximizing with respect to the parameters. Beran [4]
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gives a review and evaluation of this method. He concludes that
the two factors hampering this method in practice are 1) slow
computations (particularly for large V) and 2) inaccuracies due
to a large number of computations (the matrix calculations are
O(N?)). Various approximate likelihood methods have been
proposed to overcome this [4]. Some of these methods exploit
fast transforms of the data such as the fast Fourier transform
(Robinson [5]—see Moulines and Soulier [6] for an in depth
analysis of this estimator) or wavelet transforms (Wornell [7]
and McCoy and Walden [8] consider likelihood approaches;
Abry et al. [9]-[12] and Bardet et al. [13] study least square
methods). Vannucci and Corradi [14] consider Bayesian estima-
tion schemes for long memory processes, and Jensen [15] exam-
ines a wavelet-based likelihood method for the estimation of au-
toregressive fractionally integrated moving average (ARFIMA)
processes.

There is less literature in the case of such a process contam-
inated by a trend component. The topic of long range depen-
dence and trends is dealt with in Smith [16]-[18]. Teverovsky
and Taqqu [19] consider tests for long memory dependence in
the presence of two types of trend (shifting means and slowly de-
caying trend). Percival and Bruce [20] extend the wavelet-based
approximate likelihood estimates of McCoy and Walden [8] to
work in the presence of polynomial trends. Deo and Hurvich
[21] consider linear trends with fractionally integrated errors.
Hurvich and Chen [22] provide a spectral estimation method
that can handle some nonstationary ARFIMA processes with a
low-order polynomial trend component. Giraitis et al. [23] con-
sider families of tests for long memory observed in the presence
of deterministic trends. Leipus and Vinao [24] extend the work
of the previous paper to the case of stochastic trends. Beran and
Feng [25] use variable bandwidth smoothing to estimate such
processes with additive trend.

In this paper, we consider estimation of the long memory pa-
rameters of a polynomial contaminated FD process using the
discrete wavelet transform (DWT) (see Craigmile et al. [26] for
details on the estimation of the trend component). Wavelet trans-
forms of such time series are useful for the following reasons.

1) They approximately decorrelate FD and related processes.
We will show the resulting wavelet coefficients form a
nearly independent Gaussian sequence, simplifying the
statistics significantly.

2) Wavelets can cleanly separate polynomial trends from
noise, thus allowing us to analyze time series with a trend
well approximated by a polynomial.

3) Wavelets have excellent time and frequency localization,
which can be useful for investigating local deviations
from a statistical model.
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By using the wavelet coefficients of the transform in a multi-
variate Gaussian model (with an assumed simplified correlation
structure for the coefficients), we can estimate the long memory
parameters using maximum likelihood. In particular, we con-
sider two models:

1) White noise wavelet model—we assume the wavelet coef-
ficients are independent both within and between wavelet
scales.

2) First-order autoregressive [AR(1)] wavelet model. We
show that there is often a small lag one autocorrelation
between wavelet coefficients on a specific scale. As a
model for this, we assume independence between scales
and specific AR(1) models within each scale. While the
AR models are different for each scale, they are in fact
coupled together and are fully determined by just two FD
parameters.

In Section II, we define the DWT. We define the FD process
in Section III and demonstrate the statistical properties of the
DWT of these processes (with and without trend) in Section IV.
We outline the approximate maximum likelihood scheme for
the white noise wavelet model in Section V and for the AR(1)
wavelet model in Section VI. We provide theory for these es-
timators, under the assumption that the approximating models
are true, in Section VII and obtain approximate confidence
intervals for the model parameters. In Section VIII, Monte
Carlo simulations are used to assess these methods in practice.
We also compare our methods to the spectral-based method
of Hurvich and Chen [22] and the wavelet-based method of
Veitch and Abry [12]. In Section IX we apply our theory to
a northern hemisphere temperature dataset obtained from the
Climate Research Unit, University of East Anglia, U.K. We
close with a summary and discussion in Section X (proofs of
the results presented in this paper can be downloaded from
http://www.stat.ohio-state.edu/~pfc/).

II. DISCRETE WAVELET TRANSFORM

Suppose {X;: ¢ = 0,...,N — 1} is our observed time se-
ries with NV divisible by 27 for some positive integer .J. For
an even positive integer L, let {h;: | = 0,...,L — 1} denote
the Daubechies wavelet filter of unit l5 norm. The squared gain

function for the wavelet filter is given by

L/2-1

Hi,(f) = 2sin(n f) ; <L/2_ll+l>coszl(7rf).
(1

For a particular choice of L, there are multiple filters {h;} that
share this squared gain function. This is because the transfer
function Hq r.(f) = le—Ol hie27fl which is associated
with the squared gain function via H1 (f) = |[H1,(f)|%
is not unique. Daubechies [27] distinguishes between two (of
the possible) choices: the extremal phase D(L) filters are the
ones that exhibit the smallest delay (have maximum cumulative
energy) over other choices, and the least asymmetric LA(L)
filters (which differ from the D(L) filters when L = 8,10,...)
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are the closest approximations to linear-phase filters. We now
define the level j wavelet coefficients in terms of a filtering
of our data {X;}. We can calculate the wavelet coefficients
efficiently using a cascade algorithm rather than filtering the
data directly [28], [29]. Define L; = (27 — 1)(L — 1) + 1. The
level j wavelet filter {h;;: I = 0,...,L; — 1} can be defined
as the inverse Fourier transform of its transfer function

Hj,L(f) = e—'i27r(L_771—1)fH1’L(2j_1f)
j—2
x [ Huc(1/2=2%f) @

k=0

which in turn defines the jth-level squared gain function
H;.(f) = |H;(f)|* This filter is an approximate bandpass
filter with a passband given by |f| € [1/2771,1/27]. Then,

for N; = N/2J, the level j wavelet coefficients are, for
k=0,...,N; -1
Lj—1
Wik = Z hj1 X2 (k+1)~1—ImodN- (3)

=0

These coefficients are associated with changes in averages
on scale 2/~! and with times spaced 27 apart. The first
Bj = min([(L — 2)(1 — 277)], N;) wavelet coefficients are
affected by circularly filtering data, that is, the coefficients
{W;r: k = 0,...,Bj — 1} combine data from the start
and end of the sequence. We refer to these as the boundary
coefficients. The remaining M; = N; — B; are unaffected by
boundaries, and we call them the nonboundary (nb) coefficients
Wik = Wip4r:j = 1,...,J;k = 0,...,M; — 1}. The
statistical properties of the boundary coefficients can be quite
different from those of the nonboundary coefficients.

III. FRACTIONALLY DIFFERENCED PROCESSES

The FD process is a long memory dependence model that
has become popular in recent years, mainly due to its tractable
mathematical properties. The process was originally proposed
by Granger and Joyeux [2] and Hosking [3] as an extension to
ARIMA(0, d, 0) models to allow for fractional values of d. For
d € [~1/2,1/2) and 0 > 0, the stationary Gaussian process
{X;:t € Z} is an FD(d) or ARFIMA(0, d, 0) process if it has
a spectrum

S(f) = o*2sin(x f)| 7%, |f] < 1/2. )
Here, d is known as the fractional difference parameter, and o2
is the innovations variance.

For d € (—1/2,1/2), the process is stationary and invert-
ible and is a white noise (i.e., uncorrelated) process for d = 0.
For d = —1/2, the process is stationary but noninvertible. We
can extend this model by letting d > 1/2 and obtain a class
of nonstationary processes that become stationary after differ-
encing |d + 1/2] times [30]. Taking differences of the process,
we can let d < —1/2 to obtain a stationary, but noninvertible,
process. For d € [—1/2,1/2), the autocovariance sequence can
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be shown to be (Beran [4] and Hosking [3] for the d = —1/2

case)

) (=1 (1 - 2d)
T1l—d+kT(1—-d—-k)

S, =0 5)
Fast simulation of FD processes is possible using the
Davies—Harte algorithm [31]-[33]. Further properties and
an extensive history of the FD process can be found in, e.g.,
Beran [4] and Samorodnitsky and Taqqu [34, Sec. 7.13 and
14.7].

IV. NONBOUNDARY WAVELET COEFFICIENTS
OF AN FD PROCESS

Suppose we observe a realization of a Gaussian FD(d)
process {Xy:t = 0,...,N — 1}. By the linearity of the
DWT, the wavelet coefficients of the process are Gaussian. By
definition of the level-j wavelet filter, {h;;},>", h;; = 0 [29,
Tab. 154], and it follows that the wavelet coefficients have zero
expectation. We now investigate the second moment properties
of the nonboundary (nb) wavelet coefficients. By [29, (348a)]

COV(Wj’k, W]",k’)

1/2 . )
_ / 22’ (K'+1)—29 (k+1)] f
-1/2

x HjL(f)H L (f)o®(2sin(xf))=>" df
where * denotes the complex conjugation operator. Between
scales the DWT acts as a whitening transform for an FD process,
that is, for j # ]",c:ov(I/T/ch7 Wj,,k/) ~ 0. This approximation
improves with increasing L. In fact, as L. — oo, the covariance
tends to zero, as the next result due to Craigmile and Percival
[35] states.

Theorem 4.1: Let W, and Wj 1 be the level j and 5’
wavelet coefficients for an FD process { X; } based on a wavelet
filter {h;} of width L. Then, cov(W; 1, Wj 1) — Oas L — oo
when j # 7.

Thus, for sufficiently long wavelet filters, we can bound the
covariance between different wavelet levels by some small €. In
practice, we would like to use longer wavelet filters to decorre-
late between wavelet scales, but this also has the effect of de-
creasing the number of nb wavelet coefficients. This result ig-
nores what effect longer wavelet filters will have on within-scale
correlations, which is the subject of the next theorem.

Theorem 4.2: When d < (L + 1)/2, the nb wavelet co-
efficients within a given level j are a portion of a zero mean
stationary process with autocovariance sequence given by
coV(W; i, Wi kir) = 025;.-(d), where

vz
%MP/eW%m# ©)
~1/2

and S;(f) = 270 YR 5" Hyn (279 (f + k) (2sin(x 277 (f +
k)~

Hence within a particular wavelet scale, the nb wavelet co-
efficients of an FD process are also approximately uncorrelated
if S;(-) is close to the spectrum for a white noise process, that
is, S;(-) is approximately flat. Fig. 1 illustrates that this is a
good approximation for an FD(0.45) process with 02 = 1 an-
alyzed using a LA(8) wavelet filter. The first panel shows the
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spectrum of the process along with the approximate passbands
that correspond to the first five wavelet levels. The second panel
shows S;(-) for j = 1,...,5. The right-most two panels illus-
trate the approximations to these spectra used in the paper. If we
assume that the wavelet coefficients are uncorrelated per each
wavelet level, we obtain the flat spectra given in the third panel.
Clearly, the fourth panel show spectra that better model the true
spectra of the wavelet coefficients. In this case, we assume that
the wavelet coefficients on each level follow an AR(1) model,
where the AR parameters are given by ¢,(d) = s;1(d)/s;0(d)
with variance 75 (d) = (1 — ¢3(d)) and hence depend on d
and o2 alone.

Now, letY; = T+ X, where T; is a deterministic polynomial
trend of order K, and perform a DWT on these data [26]. Be-
cause a Daubechies wavelet filter of order L has L/2 embedded
differencing operations, we can zero out a trend of polynomial
order K in the nb wavelet coefficients if K < L/2 — 1, that is,
only the boundary wavelet coefficients will be influenced by the
trend component. The above results apply, and the nb wavelet
coefficients can be regarded approximately as either uncorre-
lated or following an AR(1) model on each level.

V. WHITE NOISE MODEL

We now consider the simplest model for estimating the
parameters of the FD process using the wavelet coeffi-
cients [the next section explores the refinement given by
the AR(1) model]. Assume that the nb wavelet coefficients
{VNijk: j=1..,J,k =0,...,M; — 1} are independent
samples with W; . ~ N (0, s;.0(d)o?). The likelihood function
for this model is

Las(d, 0% | W)
J M;-1 =5
J Wk
= (27msj0(d)o?) ™Y 2 exp | ——22 ]
jl;{ ,:J;I(:) J 2Sj’0(d>02

M;—1

Ifwelet R; =), 7

level 5 nb wavelet coefficients and M = Z'le M;, then maxi-
mizing the likelihood is equivalent to minimizing twice the neg-
ative of the log likelihood, that is

2l (d, 0 | Wj k) = M log(2m0?)

J
R;
+ ]2::1 |:Mj 1Og(8j70(d)) + W

VNI/'j2 & denote the sum of squares of the

(N

For a given d, the above is a function of ¢ that is minimized
when

J
~2 _ i R;
UM(d)_ M;SJO(CZ)

Substituting this estimator into (7), we obtain a function of d
alone, which is known as the profile log likelihood [36]:

— 20 (d, 63,(d) | W, 1)

®)

J
= M (log (2763,(d)) +1) + Y M;log(sjo(d)). (9)
j=1

Minimizing with respect to d yields the maximum likelihood
estimator d;.
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Fig. 1. Going from left to right and from top to bottom, the plots show the

spectrum of an FD(0.45) process (dotted vertical lines indicate the approximate
passbands for the first five wavelet levels), the spectra of the LA(8) nb wavelet
coefficients, and the spectra assumed in the white noise (WN) and AR(1)
models.

VI. FIRST-ORDER AUTOREGRESSIVE MODEL

In Fig. 1, we illustrated that within scales, a good approxima-
tion to the spectrum of the nb wavelet coefficients is to assume
an AR(1) model per scale. We now investigate this in further
detail. We assume {W; z: k = 0... M, — 1} is a portion of an
AR(1) process, that is

Wik = ¢ (d)Wj ko1 + (Zub)jik

where {(an)jvk ~ N(O,’r]j(d)O'Q):j =1... J7 k=0... Mj—
1} are a set of independent random variables. The parameters
of the AR(1) process on each wavelet scale j are potentially
different, but across scales, they are coupled together through
the dependence on the FD process parameters. For any given
level j, the Yule—Walker equations (e.g., Box et al. [1]) yield

¢i(d) = s5,1(d)/s,0(d)

(10)

and
nj(d) = s50(d) (1 = ¢5(d)) .

Assuming again independence between coefficients on different
scales, it follows from [1] that minus two times the profile like-
lihood is

(1)

— 2y (d
= M [log

()| W)
(2163 (d)) +1]

J
+ Y [Mjlog(ni(d)) —log (1 - ¢3(d)]  (12)
j=1
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where the estimate of o2 is given by

L[ W20(1 = ¢;(d))
2:: n;(d)
M;—1
J ( Jk_¢1(d) J,k— 1)2
L ni(d)

Minimizing (12) with respect to d, we obtain the maximum like-
lihood estimator d;.

VII. PROPERTIES OF THE WAVELET-BASED ESTIMATORS

In this section, we provide theory for the estimators under the
models discussed in Sections V and VI. In particular, this theory
provides approximate confidence intervals for the FD param-
eter. These results give an illustration of the large sample prop-
erties of what we can think of as “wavelet-based models for long
memory” [37]. We examine further properties of these estima-
tors by simulation in Section VIII.

For a wavelet filter of width L, let Oy = {0 = (d,0?)T €
R%: d < (L + 1)/2} denote the parameter space of interest.
Suppose that 8y = (do,03)T € O, denotes the true values of
the parameters, which are estimated by 8, = (d;, o3, (dpr))T
under the white noise or AR(1) wavelet model. In addition, let
mj = limy oo (M;/M), and for any differentiable function
g, define the operator A1 (g(x)) = ((d/dz)g(z))/g(z). The
following two theorems provide the large sample properties of
the estimators under the white noise and AR(1) wavelet models,
respectively.

Theorem 7.1: Suppose that the white noise model is the true
model for the nb wavelet coefficients within each level. Then,
the following holds.

a) (Consistency) With probability converging to one there
exist solutions @ m of the likelihood equation such that
01\[ —p 00, as M — oo.

b) (Joint asymptotlc normality) /M (0 v — 6o)

N(0,%(80)), as M — oo, where

—d

_1 11 412
RO =5 [0
with a1 = E;j 1m]A%(sj,0(d)), and a2 =

o ? Z] 1M A1(s5,0(d)).
c) (Marglnal asymptotic normality of dr) V (dM —
do) —a N(0,%2(do)), as M — oo, where

Py(d) = ij

(s5,0(d))

- Z m;Ai(sj0(d))

d) (Exact distribution of 63,(dg)) %,(do) =a o2x3,/M,
where 3, denotes a chi squared random variable with M
degrees of freedom.
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TABLE I
CALCULATION OF %3 (d) FOR VARIOUS FILTER WIDTHS L, UNDER EITHER THE
WHITE NOISE (WN) (k = 0) oR AR(1) MODEL (k = 1) WITHIN EACH
WAVELET SCALE. WE SET J = 6 IN EACH CASE

d

L Model 0 0.25 0.50 0.75 1.00 1.25 1.50
2 WN 1260 1.036 0.896 0.781 0.664  0.541 -

2 AR(1) | 1.260 1.020 0.886 0.795 0.664 0.433 —

4 WN 1.060 0982 0921 0.867 0816 0.764 0.712
4  AR(1) | 1.060 0961 0.884 0828 0.793 0.778 0.761
8 WN 0991 0956 0923 0.893 0864 0.836 0.809
8 AR(1) | 0991 0936 0884 0.838 0.800 0.771 0.755
16 WN 0966 0.943 0921 0900 0.880 0.862 0.844
16 AR(1) | 0966 0925 0.886 0.850 0.817 0.788 0.764

To calculate Aq(s;o(d)) in the above theorem, we need to
know (d/dd)s; - (d), which is

1/2 '
—s,(d)=—-4 /0 [log sin(7 f)] cos(2/ 1w f)
x Mo (f)(2sin(nf)) > df (13)

and is obtained via Leibnitz’s rule, which allows us to inter-
change differentiation and integration.

Theorem 7.2: Suppose that the AR(1) model is the true
model for the nb wavelet coefficients within each wavelet level.
Then, the following holds.

a) (Consistency) With probability converging to one, there

exist solutions 0, of the likelihood equation such that
0M —p 00, as M — oo.

b) (Joint asymptotlc normality) +/ (01\1 — 6y —ua
N(0,%"(80)), as M — oo, where
_ b bio
RO = |
with by = S m;A¥(n;(d)) and
bio = 072 7 miAr(n;(d)).

c) (Marglnal asymptotic normality of dur) V (dM —
do) —a N(0,%2(dy)), as M — oo, where

J
ijA
7=1

P7(d) =2

97 -1

3 mi A ((@)

In the above theorem, we calculate Aq(n;(d)) =
(d/dd)n;(d)/n;(d) by taking derivatives of (11) with re-
spect to d. In particular

d iSJ, (d)
@%(d) = % — ¢i(d)A1(s5,0(d)),
d

—ni(d) = <dddsj, (d)) (1-¢5(d))

d
+2s50(d)¢;(d) | —5;(d) ) -
dd
Table I tabulates 17 (d) from the above theorems for various

widths L, under either the white noise (k = 0) or the AR(1)
model (k = 1) within each wavelet scale. For fixed L, the
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asymptotic variance decreases with increasing d. It also de-
creases with increasing L for stationary d < 1/2 but increases
with L for nonstationary d > 1/2. As a result, 17 (d) becomes
more uniform across d as L increases.

We can obtain approximate confidence intervals for d
based on the above models and their profile likelihoods
via the log likelihood ratio statistic 2log A(d,d3,(d)) =

2ln(d, 62,(d)) — In(d,62,(d))] (the Wald or Rao test sta-
tistics could also be used to provide a confidence interval).
Standard statistical theory (e.g., Lehmann [38]) suggests that
an approximate 100(1 — «)% confidence interval is then given
by {d: 2log \(d,63,(d)) < ¢1(1 — «)}, where here ¢1(1 — «)
denotes the (1 — «)th quantile of a chi-squared random variable
with 1 degree of freedom.

VIII. MONTE CARLO STUDIES

Our aim in this section is to investigate how well the estima-
tors perform in practice for the white noise and AR(1) wavelet
models. We also compare the AR(1) model estimator to the esti-
mators of Hurvich and Chen [22] and Veitch and Abry [12]. All
realizations of FD processes are created using the Davies—Harte
algorithm with 02 = 1 (there is no loss of generality with this
arbitrary choice).

A. Estimation of the Long Memory Parameter

We first investigated how well wavelet-based estimators of
the difference parameter d performed in practice. We simulated
1024 replications of FD(d) processes of length N = 256, 512,
and 1024 for values of d ranging from O to 1.5 in steps of
0.25. In each case, we added a linear trend of the form 71; =
0.5¢/N,t =0,..., N — 1, and the resulting time series was an-
alyzed using the DWT with the Haar (D(2)), D(4), and LA(8)
wavelet filters. The number of levels J to which we analyzed
was dependent on the wavelet filter and the sample size N,
namely, J = log,(N) — L/2. We estimated d via the white
noise and AR(1) wavelet models. Each study, carried out in
the statistical software package R [39], was performed by min-
imizing the negative log-profile likelihood for values of d €
[-1,min{(L + 1)/2,3}] (an arbitrary choice). We used two
methods for calculating s; -(d) [defined in (6)].

1) Exact form: Use numerical integration with a Gauss rule,
calculating H; 1.( f) using the modulus squared of (2).

2) Bandpass approximation: H; r(f) by the squared
gain function for a bandpass filter with passband
[1/29+11/27], yielding, e.g., sjo(d) ~ 2/ fll//;m
[2sin(7 f)] =24 df .

Fig. 2 shows a plot of the root mean square error (RMSE)
of the estimates for each case. The standard errors for the
RMSE:s (calculated using 512 bootstrap samples) are bounded
by 0.0025, that is, approximately the height of the plotting sym-
bols. For the Haar case, we only plotted results for d < 1.25
(since the condition d < (L + 1)/2 does not hold for d = 1.5).
In all cases of wavelet filter and model, we can see that estima-
tion is best for small values of d. For d > 0, the RMSEs tend
to be smaller for the exact s, (d) compared with the bandpass
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Fig.2. RMSE in estimating the difference parameter using either the white noise or autoregressive wavelet models, for various wavelet filters, sample lengths IV,
and difference parameters. The different symbols denote the different wavelet models and whether an exact or bandpass variance was used. The standard deviations
of the estimated RMSEs are bounded by 0.0025. The lines on each panel denote the theoretical RMSE %, (d)/v/ M for the AR(1) method with exact variance

calculations.

approximation. This difference increases with d but decreases
with increasing wavelet filter order because 7, 1.( - ) converges
to an ideal bandpass filter as I. — oo [40]. The empirical value
of the RMSE is worse in general for the white noise as com-
pared with the autoregressive model. This is because, as shown
in Fig. 1, the AR(1) model gives us a better approximation to the
correlation structure of the wavelet coefficients than the white
noise model does (the white noise approximation deteriorates
with increasing d). The RMSEs increase with wavelet order
and decrease for longer time series.

Fig. 2 also enables us to evaluate the theory of Section VII
(where we assume an approximating model for the wavelet co-
efficients) on the basis of the simulation results. The lines on
Fig. 2 display the theoretical RMSE 11 (d)/+/M for the AR(1)
model, calculated using the equation in Theorem 7.2 with exact
variance calculations for s; - (d). The theoretical and simulated
values for the AR(1) model are closest for longer filter widths
L, smaller d, and larger N. This is as expected since the theo-
retical RMSE is an asymptotic value that is calculated under the
assumption of perfect decorrelation between scales (which, by

Theorem 4.1, is better approximated by longer filter widths L),
using an approximating model within scale, which fits better for
values of d closest to zero.

The estimation bias is not shown in Fig. 2. In general, the
bias decreases as we increase the wavelet order and, for d #
0, is bounded by +0.01 (with a maximum standard deviation
of 0.003). This is because we obtain better decorrelation be-
tween wavelet scales when we use longer wavelet filters. The
bias is smaller for the exact s, (d) calculation compared with
the bandpass approximation and for the AR(1) wavelet model
compared with the white noise wavelet model [the biases for
the AR(1) model using an LA(8) filter with a bandpass vari-
ance calculation are displayed in Table II]. Because of the rel-
atively low biases, the variance largely determines the MSE of
these estimators.

B. Comparisons With the Hurvich—Chen Estimator

Hurvich and Chen [22] propose a complex-valued taper that
can be used to estimate d in the presence of a low-order poly-
nomial trend when d € (—0.5, 1.5). This estimator is based on
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WAVELET MODEL (WITH S1X WAVELET LEVELS), AND THE AR(1) WAVELET MODEL (USING LEVELS j = 3, ...
MODEL). BOTH WAVELET ESTIMATORS USE AN LA(8) WAVELET FILTER DECOMPOSITION OF THE FIRST 512 TIME POINTS

TABLE 1I
MONTE CARLO COMPARISON OF FOUR METHODS TO ESTIMATE d. IN EACH CASE, WE SIMULATED AN N = 513 FD(d) SERIES WITH A LINEAR TREND (500
TIMES IN EACH CASE), AND ESTIMATED d USING THE BASIC GAUSSIAN SEMIPARAMETRIC METHOD (GSE), THE TAPERED VERSION (GSET), THE AR(1)

GSE GSET AR(1) Subset AR(1)
d bias var. MSE bias var. MSE bias var. MSE bias var. MSE
0.0 [ 0.261 0.037 0.105 [ 0.069 0.014 0.019 [ 0.002 0.003 0.003 | -0.00I 0.016 0.016
0.2 | 0.127 0.022 0.038 | 0.049 0.014 0.017 | -0.008 0.003 0.003 | -0.025 0.018 0.018
0.4 | 0.062 0.013 0.017 | 0.042 0.016 0.018 | -0.002 0.002 0.002 | -0.003 0.017 0.017
0.6 | 0.010 0.011 0.011 | 0.020 0.015 0.015 [ 0.000 0.003 0.003 | -0.012 0.016 0.017
0.8 | -0.007 0.012 0.012 | -0.001 0.015 0.015 | -0.001 0.003 0.003 | -0.009 0.016 0.016
1.2 | -0.007 0.010 0.010 | -0.026 0.014 0.015 | -0.005 0.002 0.002 | -0.017 0.017 0.018
1.4 | -0.010 0.007 0.007 | -0.040 0.011 0.013 | -0.001 0.003 0.003 | -0.010 0.018 0.018
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,6, WHICH WE CALL THE SUBSET AR(1)

the Gaussian semiparametric estimator due to Kiinsch [41]. For
fi =J/N, let
N-—
F(p) ] — L 7i27rfjt
VN 5
denote the (orthonormal) discrete Fourier transform of the data
[29, ch. 3], and let S®)(f;) = |F®)(f;)?> denote the peri-
odogram of the data. The Kiinsch [41] estimator is the value
of d € (—0.5,0.5) that minimizes

(14)

Q (4,53() = log (3() ~ 203" log(2sin(x ;) (15)
=1
for some m < N/2, where 63(d) = m 'YL,
(2sin(7f;))2*S®)(f;). The refinement of Hurvich and
Chen [22] is to first difference the data, thus turning a re-
alization of a process with d € (—0.5,1.5) into one with a
difference parameter in the range (—1.5,0.5). This yields the
Gaussian semiparametric estimator (GSE), which can perform
badly for low values of d as we have overdifferenced the time
series. To compensate for this, a complex spectral taper is
used (basically an extension of Tukey’s cosine bell taper to
the complex plane). The spectral estimator for this taper is
given by S (f,) = [FO(f;) — e~ /N FO)(f;.1)]/2, and
then we minimize expression (15) with S®)( f;) replaced by
S(e)(f;) in the expression for 4 (d). Under conditions set
out in Hurvich and Chen [22], this estimator, which is denoted
GSET (“T” stands for tapered), is consistent and has a Gaussian
limiting distribution. A good choice of m is given by N4/5 /4.
We now compare GSE and GSET with our wavelet-based es-
timator. We conducted a simulation study similar to Hurvich and
Chen [22], for which they consider time series of length 513 for
an FD(d) process with d = 0 to 1.4 in steps of 0.2. However,
in our simulations, we also consider the same linear trend com-
ponent as above, i.e., T = 0.5¢/N, fort = 0,...,512. For the
wavelet-based estimator, we used the AR(1) model with exact
sj.+(d) calculations in conjunction with a level J = 6 LA(8)
DWT of the first 512 point of each simulated series. The bias,
variance, and RMSEs of the sample of estimates for 500 replica-
tions of each method are shown in three parts of Table II. We see
that the wavelet-based estimator clearly outperforms the other
two estimators in terms of RMSE, variance, and magnitude of
bias. The reason for the disparity in the results is because the
GSE and GSET methods use a trim factor . In this simulation
study, the estimate of d for these spectral methods are based
on 37 periodogram bins. For the wavelet-based method, we use

480 wavelet coefficients. If we reduce the number of wavelet
levels that we use to estimate d, then the results become more
comparable. To demonstrate this, the last columns of Table II
display the bias, variance, and RMSE for an AR(1) model fit
using only levels 7 = 3,.. ., 6 (this choice means that the range
of frequencies collectively covered by the wavelet coefficients
is approximately the same as covered by GSE and GSET). The
bias for this subset AR(1) model is smaller than for the GSET
method (except at d = 0.8), but the variance is larger. Trimming
of periodogram bins or wavelet levels is useful in practice if we
want to estimate d in the presence of the short-range dependence
(see, e.g., Hurvich and Chen [22] and Bardet et al. [13]).

C. Comparisons With the Veitch-Abry Estimator

Veitch and Abry [12] consider a weighted least squares
wavelet-based estimator of the long memory parameter d.
Their method is based on a unbiased estimate of the wavelet
variance at level j given by w; = > kI . W2 «/M;. Letting
y; = logy(w;) — $(M;/2)/ log 2 + logy(M; /3), where 1( )
denotes the digamma function, and under the assumption that
the wavelet coefficients are Gaussian and independent both
across and within scales, they show that

E(y;) = log(0?) + d(2))
var(y;) = (2, M; /2)/(log 2)°

for each j, where ((-, -) denotes the generalized Zeta function.
Estimation of d is obtained using weighted least squares esti-
mation in a simple linear regression model, where {y;: j =
Jo,...,J1} is the response variable, and the explanatory vari-
ableis {2j:j = Jo,...,J1}.Here, Jy, ..., J; denotes the range
of values over which the power-law relationship, i.e., S(f) o
|£2|~4, holds.

Table III summarizes the results of a Monte Carlo simula-
tion to compare the performance of the AR(1) wavelet methods
with exact variances calculations to the Veitch—Abry estimator.
In each case, we simulated 500 realizations of an FD(d) process
with additive linear trend T3 = ft/512,fort = 0,...,511, with
the slope parameter set at 3 = 0.5. We analyzed each process
to J = 6 levels using an LA(8) wavelet. For both methods, we
calculated the estimate of d using only the wavelet coefficients
on levels Jy, ..., J;. We fixed J; = 6, and let J, be either 1 or
2. As Jy increases, the spectrum will be closer to a power law.
We repeated the experiment for d = 0 to 1.4 in steps of 0.2 and
calculated the bias, variance, and MSE for each estimator. As
we can see, the AR(1) wavelet method has a small bias for each
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TABLE III

WE SIMULATED AN N = 512 FD(d) SERIES WITH A LINEAR TREND, 500 TIMES IN EACH CASE, AND ESTIMATED d USING EACH METHOD

AR(1), Jo =1 Veitch—Abry, Jo = 1 AR(1), Jo =2 Veitch—Abry, Jo = 2
d bias var. MSE bias var. MSE bias var. MSE bias var. MSE
0.0 [ -0.004 0.003 0.003 [ -0.002 0.003 0.003 [ -0.007 0.005 0.006 [ -0.005 0.006 0.006
0.2 | -0.007 0.003 0.003 [ -0.036 0.002 0.003 [ -0.007 0.006 0.006 [ -0.015 0.006 0.007
04 | -0.005 0.003 0.003 [ -0.061 0.002 0.006 [ -0.010 0.006 0.006 [ -0.020 0.007 0.007
0.6 | -0.005 0.002 0.003 [ -0.089 0.002 0.010 | -0.004 0.005 0.005 [ -0.023 0.007 0.007
0.8 | -0.001 0.002 0.002 [ -0.109 0.002 0.014 | -0.003 0.005 0.005 [ -0.031 0.007 0.008
1.0 | 0.000 0.002 0.002 | -0.125 0.002 0.018 | -0.002 0.005 0.005 | -0.030 0.007 0.008
1.2 | -0.006 0.002 0.003 | -0.148 0.003  0.024 | -0.009 0.006 0.006 | -0.042 0.008 0.010
1.4 | -0.004 0.003 0.003 | -0.160 0.003 0.029 | -0.005 0.006 0.006 | -0.040 0.009 0.011

d, whereas, with the Veitch—Abry estimator, the bias tends to in-
crease as d increases. The variances of both estimators are com-
parable, with the variance of the Veitch—Abry estimator being
slightly larger than the variance of the AR(1) estimator when
Jo = 2. In terms of the MSE, the AR(1) wavelet method per-
forms better for larger d. Because there are fewer wavelet co-
efficients included in each of the estimators, the MSEs of both
estimators increase as Jy increases.

IX. NORTHERN HEMISPHERE TEMPERATURE SERIES

The top panel of Fig. 3 shows a time series plot of the de-
seasonalized monthly deviations in the average Northern hemi-
sphere temperature (in units of degrees Celsius) from 1854 to
1998, relative to the monthly average over the period 1961 to
1990. The original data come from the Climate Research Unit,
University of East Anglia, U.K. This updated version of the
dataset incorporates combinations of grid data (over the sea and
land) from 1000 extra sites, new reference periods, and an in-
creased resolution. Visually, there is an indication of an upward
trend and increased variability at the start of the series.

There has been much interest in earlier versions of this time
series that only went up to 1989 and were averaged over a dif-
ferent reference period (1950-1979). Smith [18] illustrates the
problem of trying to fit an autoregressive model to the data.
Using a spectral-based estimate of d, he finds significant long
memory behavior in the series, with d (depending on the choice
of two key parameters in the estimator). Alternatively, using a
kernel smoother, Beran and Feng [25] obtain an ML estimate
for d of 0.33 with a 95% CI of [0.19, 0.46]. We now analyze
the newer version of series using our proposed methodology,
which allows us to estimate d, even if data are contaminated by
a low-order polynomial (as might be the case here). We first as-
sess whether an FD(d) process is reasonable for this series.

The bottom panel of Fig. 3 shows a periodogram of
the data. If we take the log of the spectrum given by (4),
we have log(Sx(f)) log(20?) — 2dlog(2sin(w fAt)),
for 0 < f < 1/(2At), where At 1/12 year is
the sampling rate. For small z, sin(z) x, and thus,
log(Sx(f)) log(202) — 2dlog(27 fAt). Hence, an FD
process is a good model if the log spectrum versus log fre-
quency is approximately a straight line for small f, as in this
case. By calculating the slope of the line for small enough f,
we obtain an estimate of d. We obtain an estimate of 0.532 for
f <1, indicating evidence of long memory.
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Fig. 3. (Top) Time series plot of the monthly deseasonalized deviations in the

northern hemisphere temperatures. (Bottom) Corresponding periodogram. The
spectrum (in decibels) is shown versus the log (base 2) frequency. The dashed
line with the negative slope on the periodogram denotes the least squares fit for
f<1

Using an LA(8) wavelet filter (which can handle a cubic poly-
nomial trend) and analyzing to level J = 7, we obtain the
DWT decomposition of the deseasonalized deviations shown in
Fig. 4. The thick gray vertical lines denote the partition between
the boundary (outside) and nb wavelet coefficients (inside) on
each wavelet level. The nb wavelet coefficients on lower scales
(j = 1,2, 3) are more variable in earlier years, which violates
an assumption behind our proposed method for estimating d.
We can also look at normal Q-Q plots, autocorrelation func-
tions (ACFs), partial autocorrelation functions (PACFs), and pe-
riodograms for the nb wavelet coefficients on each scale (not
shown). From these plots, the Gaussian assumption for the data
seems reasonable, although the nonconstant variance is evident
in the lower wavelet levels by an over-dispersion in the Q-Q
plots. Lag 1 autocorrelations on levels 4 and 5 imply that the
AR(1) wavelet model is more appropriate than the white noise
model. If we ignore the nonconstant variance problem (as has
also been done in the earlier analyzes cited above), we obtain an
estimate of cZM = 0.361 (with a 95% CI of [0.317, 0.408]) and
62(dpr) = 0.045 using the AR(1) model.

To assess the affect of nonconstant variance, we repeated our
analysis using just the last 96 years of data. In this case, the het-
eroscedacity in the boundary-independent wavelet coefficients
reduces, and via the AR(1) wavelet model, we obtain d M =
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Fig. 4. Wavelet coefficients from DWT decomposition of the northern
hemisphere series using an LA(8) wavelet filter analyzing levels j =
1,...,J = 7. The thick gray vertical lines denote the partition between the
boundary (outside) and nonboundary wavelet coefficients (inside) on each
wavelet level.

0.368 (with a 95% CI of [0.323, 0.415]) and &]2\1(31\1) = 0.032.
The increased variability at the start of series thus has little ef-
fect on the estimate of d, but the innovation variance is reduced
somewhat.

An alternative to dealing with deseasonalized monthly devi-
ates is to analyze yearly averages of the original monthly devi-
ates. A periodogram similar to the one shown previously shows
evidence of long memory in this case. We perform a DWT on
these data using a D(6) filter to level J = 4 (the lower values
of L and J are dictated by the decrease in sample size). The
equivalent diagnostic plots show few problems in the distribu-
tion of the boundary-independent wavelet coefficients (probably
due to the small sample sizes—note that we can only handle a
quadratic trend now). When we use the AR(1) wavelet model,
we obtain cZM = 0.343 (with a 95% CI of [0.101, 0.648]) and
&%,I(CZ ) = 0.020, which is comparable with the previous re-
sults. The smaller value of the innovations variance is due to the
averaging involved.

Thus, independently of the possible presence of a low-order
polynomial trend of order K (as long as L/2 > K + 1), there
is evidence of significant long memory. For the deseasonalized
deviations, the long memory process is stationary (since the CI
for d does not contain values greater than or equal to 0.5), but we
cannot conclude stationarity for the yearly averaged series (due
to the reduction in sample size). These deductions support the
ideas of Smith [18] and Beran and Feng [25] that we should be
cautious in testing for a significant trend in this series unless we
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can adequately account for the long memory dependence (the
question of the significance of trend can be investigated using
the methods of Craigmile et al. [26]).

X. DISCUSSION AND SUMMARY

The key property of the DWT that we have exploited in our
work is that it approximately decorrelates FD processes. The
degree to which this approximation holds must be assessed by
considering the correlations between wavelet coefficients on the
same scale and on different scales. As the wavelet filter width
L increases, the correlation between coefficients on different
scales necessarily decreases to zero [35]; however, the same
cannot be said for within-scale correlations. Since coefficients
within scale are correlated, we consider an AR model to capture
this dependency structure. The combination of a moderate filter
width (L = 8) and the AR model is sufficient to give a very
good description of FD processes in the wavelet domain. We
have demonstrated through our Monte Carlo experiments that
the large sample theory that is based upon this wavelet-based
description is reasonably accurate, even for modest sample sizes
(N = 256). While it should be possible to derive a large sample
theory that would take into account the correlations between the
wavelet coefficients not accounted for by our approximations,
the justification for this nontrivial extension would have to be as
an interesting mathematical exercise: The theory that we have
developed here is sufficient for all practical purposes.

Our methodology depends on a sensible choice of the width
L for the wavelet filter. Two considerations are important. The
first concerns the order K of the polynomial that we are willing
to consider in our statistical model. Setting K places a lower
bound on L since we must have L > 2(K + 1). The second
consideration is dictated by our simulations, which show that
the RMSE in estimating d increases as L increases due in part to
the decrease in the number of nb coefficients per scale. There is
thus good reason to not let L be too much above 2(K +1). (Our
estimator of d is designed to be impervious to trends that are
well-modeled by low order polynomials. The question of how
to use wavelets to estimate and test for such trends is addressed
in Craigmile et al. [26].)

Since our theory agrees with our simulations that are best for
smaller values of d, a useful strategy in practice is to difference
the process when there is evidence that d > 0.5 (i.e., the FD
process is nonstationary). The theory developed in this paper
will then apply to estimation of the long memory parameter for
the differenced series (since our theory applies to the estimation
of FD processes for d < 0).

The results presented here for FD processes can be extended
naturally to, for example, ARFIMA processes by modeling the
autoregressive and moving average component in the spectrum
of the process. This allows us to model short- and long-range de-
pendence in a time series. Estimation via likelihood is supported
by equivalent limit theorems. The limit variance of the differ-
ence parameter will then depend on the other parameters in the
model. When extending the results to other error processes, we
need to assess the extent to which we can decorrelate the error
process and, thus, whether the white noise or AR(1) wavelet
model are still adequate fits for the nb wavelet coefficients. Plots
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allow us to investigate this question empirically (see, e.g., Fig. 1)
and in practice (by looking at normal Q-Q plots, ACFs, PACFs,
and periodograms for the nb wavelet coefficients). Another way
to estimate the magnitude of long-range dependence in the pres-
ence of short-range dependence is to only consider lower fre-
quencies of the spectrum (but not too low as to be affected by
trend). Equivalently, using the frequency localization of wavelet
transforms, we estimate d using a subset of wavelet scales. This
leads to a semiparametric wavelet-based approach for the esti-
mation of long memory processes (e.g., Veitch and Abry [12]
and Bardet et al. [13]). Selection of the range of wavelet scales
to include in the estimator is critical in obtaining estimators with
good statistical properties, especially in the presence of trend
(see Veitch and Abry [12], [42] for a discussion of such issues
under the assumption that the wavelet coefficients are indepen-
dent both across and within scale).

In summary, we have investigated estimation of the parame-
ters of polynomial contaminated FD processes using the DWT.
Our proposed method is valuable in the case of low-order poly-
nomial trend (relative to the wavelet order) since it provides for
an elegant partitioning of the noise and trend components. This
leads to an computationally efficient estimator of d (the wavelet
transform is O(NN), and the solution of the profile likelihood
equation is fast if we use division schemes such as the bisec-
tion method or a Newton—Raphson algorithm). We can also im-
prove estimation by modeling the within-wavelet scale correla-
tions using an AR(1) model and using exact wavelet variance
calculations rather than the bandpass approximation.
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